176 Chapter 4 Vector Spaces

Left-Hand Nullspace

If $rank(\mathbf{A}_{m\times n})=r$, and if $\mathbf{PA}=\mathbf{U}$, where \mathbf{P} is nonsingular and \mathbf{U} is in row echelon form, then the last m-r rows in \mathbf{P} span the left-hand nullspace of \mathbf{A} . In other words, if $\mathbf{P}=\begin{pmatrix} \mathbf{P}_1\\ \mathbf{P}_2 \end{pmatrix}$, where \mathbf{P}_2 is $(m-r)\times m$, then

$$N\left(\mathbf{A}^{T}\right) = R\left(\mathbf{P}_{2}^{T}\right). \tag{4.2.12}$$

Proof. If $\mathbf{U} = \begin{pmatrix} \mathbf{C} \\ \mathbf{0} \end{pmatrix}$, where $\mathbf{C}_{r \times n}$, then $\mathbf{P}\mathbf{A} = \mathbf{U}$ implies $\mathbf{P}_2\mathbf{A} = \mathbf{0}$, and this says $R\left(\mathbf{P}_2^T\right) \subseteq N\left(\mathbf{A}^T\right)$. To show equality, demonstrate containment in the opposite direction by arguing that every vector in $N\left(\mathbf{A}^T\right)$ must also be in $R\left(\mathbf{P}_2^T\right)$. Suppose $\mathbf{y} \in N\left(\mathbf{A}^T\right)$, and let $\mathbf{P}^{-1} = (\mathbf{Q}_1 \ \mathbf{Q}_2)$ to conclude that

$$\mathbf{0} = \mathbf{y}^T \mathbf{A} = \mathbf{y}^T \mathbf{P}^{-1} \mathbf{U} = \mathbf{y}^T \mathbf{Q}_1 \mathbf{C} \implies \mathbf{0} = \mathbf{y}^T \mathbf{Q}_1$$

because $N\left(\mathbf{C}^{T}\right) = \{\mathbf{0}\}$ by (4.2.11). Now observe that $\mathbf{P}\mathbf{P}^{-1} = \mathbf{I} = \mathbf{P}^{-1}\mathbf{P}$ insures $\mathbf{P}_{1}\mathbf{Q}_{1} = \mathbf{I}_{r}$ and $\mathbf{Q}_{1}\mathbf{P}_{1} = \mathbf{I}_{m} - \mathbf{Q}_{2}\mathbf{P}_{2}$, so

$$\mathbf{0} = \mathbf{y}^{T} \mathbf{Q}_{1} \implies \mathbf{0} = \mathbf{y}^{T} \mathbf{Q}_{1} \mathbf{P}_{1} = \mathbf{y}^{T} \left(\mathbf{I} - \mathbf{Q}_{2} \mathbf{P}_{2} \right)$$

$$\implies \mathbf{y}^{T} = \mathbf{y}^{T} \mathbf{Q}_{2} \mathbf{P}_{2} = \left(\mathbf{y}^{T} \mathbf{Q}_{2} \right) \mathbf{P}_{2}$$

$$\implies \mathbf{y} \in R \left(\mathbf{P}_{2}^{T} \right) \implies N \left(\mathbf{A}^{T} \right) \subseteq R \left(\mathbf{P}_{2}^{T} \right). \quad \blacksquare$$

Example 4.2.5

Problem: Determine a spanning set for $N(\mathbf{A}^T)$, where $\mathbf{A} = \begin{pmatrix} 1 & 2 & 2 & 3 \\ 2 & 4 & 1 & 3 \\ 3 & 6 & 1 & 4 \end{pmatrix}$.

Solution: To find a nonsingular matrix P such that PA = U is in row echelon form, proceed as described in Exercise 3.9.1 and row reduce the augmented matrix $(A \mid I)$ to $(U \mid P)$. It must be the case that PA = U because P is the product of the elementary matrices corresponding to the elementary row operations used. Since any row echelon form will suffice, we may use Gauss–Jordan reduction to reduce A to E_A as shown below:

$$\begin{pmatrix} 1 & 2 & 2 & 3 & & 1 & 0 & 0 \\ 2 & 4 & 1 & 3 & & 0 & 1 & 0 \\ 3 & 6 & 1 & 4 & & 0 & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 & 0 & 1 & & -1/3 & 2/3 & 0 \\ 0 & 0 & 1 & 1 & & 2/3 & -1/3 & 0 \\ 0 & 0 & 0 & 0 & & 1/3 & -5/3 & 1 \end{pmatrix}$$

$$\mathbf{P} = \begin{pmatrix} -1/3 & 2/3 & 0 \\ 2/3 & -1/3 & 0 \\ 1/3 & -5/3 & 1 \end{pmatrix}, \text{ so } (4.2.12) \text{ implies } N\left(\mathbf{A}^T\right) = span \left\{ \begin{pmatrix} 1/3 \\ -5/3 \\ 1 \end{pmatrix} \right\}.$$