Solutions for Chapter 8

Solutions for exercises in section 8. 2

- **8.2.1.** The eigenvalues are $\sigma(\mathbf{A}) = \{12, 6\}$ with alg $mult_{\mathbf{A}}(6) = 2$, and it's clear that $12 = \rho(\mathbf{A}) \in \sigma(\mathbf{A})$. The eigenspace $N(\mathbf{A} 12\mathbf{I})$ is spanned by $\mathbf{e} = (1, 1, 1)^T$, so the Perron vector is $\mathbf{p} = (1/3)(1, 1, 1)^T$. The left-hand eigenspace $N(\mathbf{A}^T 12\mathbf{I})$ is spanned by $(1, 2, 3)^T$, so the left-hand Perron vector is $\mathbf{q}^T = (1/6)(1, 2, 3)$.
- **8.2.3.** If \mathbf{p}_1 and \mathbf{p}_2 are two vectors satisfying $\mathbf{A}\mathbf{p} = \rho(\mathbf{A})\mathbf{p}$, $\mathbf{p} > \mathbf{0}$, and $\|\mathbf{p}\|_1 = 1$, then dim $N(\mathbf{A} \rho(\mathbf{A})\mathbf{I}) = 1$ implies that $\mathbf{p}_1 = \alpha\mathbf{p}_2$ for some $\alpha < 0$. But $\|\mathbf{p}_1\|_1 = \|\mathbf{p}_2\|_1 = 1$ insures that $\alpha = 1$.
- **8.2.4.** $\sigma(\mathbf{A}) = \{0, 1\}$, so $\rho(\mathbf{A}) = 1$ is the Perron root, and the Perron vector is $\mathbf{p} = (\alpha + \beta)^{-1}(\beta, \alpha)$.
- **8.2.5.** (a) $\rho(\mathbf{A}/r) = 1$ is a simple eigenvalue of \mathbf{A}/r , and it's the only eigenvalue on the spectral circle of \mathbf{A}/r , so (7.10.33) on p. 630 guarantees that $\lim_{k\to\infty} (\mathbf{A}/r)^k$ exists.
 - (b) This follows from (7.10.34) on p. 630.
 - (c) **G** is the spectral projector associated with the simple eigenvalue $\lambda = r$, so formula (7.2.12) on p. 518 applies.
- **8.2.6.** If **e** is the column of all 1's, then $\mathbf{Ae} = \rho \mathbf{e}$. Since $\mathbf{e} > \mathbf{0}$, it must be a positive multiple of the Perron vector **p**, and hence $\mathbf{p} = n^{-1}\mathbf{e}$. Therefore, $\mathbf{Ap} = \rho \mathbf{p}$ implies that $\rho = \rho(\mathbf{A})$. The result for column sums follows by considering \mathbf{A}^T .
- **8.2.7.** Since $\rho = \max_i \sum_j a_{ij}$ is the largest row sum of \mathbf{A} , there must exist a matrix $\mathbf{E} \geq \mathbf{0}$ such that every row sum of $\mathbf{B} = \mathbf{A} + \mathbf{E}$ is ρ . Use Example 7.10.2 (p. 619) together with Exercise 8.2.7 to obtain $\rho(\mathbf{A}) \leq \rho(\mathbf{B}) = \rho$. The lower bound follows from the Collatz–Wielandt formula. If \mathbf{e} is the column of ones, then $\mathbf{e} \in \mathcal{N}$, so

$$\rho\left(\mathbf{A}\right) = \max_{\mathbf{x} \in \mathcal{N}} f(\mathbf{x}) \ge f(\mathbf{e}) = \min_{1 \le i \le n} \frac{[\mathbf{A}\mathbf{e}]_i}{e_i} = \min_i \sum_{j=1}^n a_{ij}.$$

- **8.2.8.** (a), (b), (c), and (d) are illustrated by using the nilpotent matrix $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.
 - (e) $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ has eigenvalues ± 1 .
- **8.2.9.** If $\xi = g(\mathbf{x})$ for $\mathbf{x} \in \mathcal{P}$, then $\xi \mathbf{x} \geq \mathbf{A} \mathbf{x} > \mathbf{0}$. Let \mathbf{p} and \mathbf{q}^T be the respective the right-hand and left-hand Perron vectors for \mathbf{A} associated with the Perron root r, and use (8.2.3) along with $\mathbf{q}^T \mathbf{x} > 0$ to write

$$\xi \mathbf{x} \ge \mathbf{A} \mathbf{x} > \mathbf{0} \implies \xi \mathbf{q}^T \mathbf{x} \ge \mathbf{q}^T \mathbf{A} \mathbf{x} = r \mathbf{q}^T \mathbf{x} \implies \xi \ge r,$$

so $g(\mathbf{x}) \geq r$ for all $\mathbf{x} \in \mathcal{P}$. Since $g(\mathbf{p}) = r$ and $\mathbf{p} \in \mathcal{P}$, it follows that $r = \min_{\mathbf{x} \in \mathcal{P}} g(\mathbf{x})$.

8.2.10.
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \implies \rho(\mathbf{A}) = 5$$
, but $g(\mathbf{e}_1) = 1 \implies \min_{\mathbf{x} \in \mathcal{N}} g(\mathbf{x}) < \rho(\mathbf{A})$.

Solutions for exercises in section 8. 3

- **8.3.1.** (a) The graph is strongly connected.
 - (b) $\rho(\mathbf{A}) = 3$, and $\mathbf{p} = (1/6, 1/2, 1/3)^T$.
 - (c) h=2 because **A** is imprimitive and singular.
- **8.3.2.** If **A** is nonsingular then there are either one or two distinct nonzero eigenvalues inside the spectral circle. But this is impossible because $\sigma(\mathbf{A})$ has to be invariant under rotations of 120° by the result on p. 677. Similarly, if **A** is singular with alg mult_{**A**} (0) = 1, then there is a single nonzero eigenvalue inside the spectral circle, which is impossible.
- **8.3.3.** No! The matrix $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$ has $\rho(\mathbf{A}) = 2$ with a corresponding eigenvector $\mathbf{e} = (1, 1)^T$, but \mathbf{A} is reducible.
- **8.3.4.** \mathbf{P}_n is nonnegative and irreducible (its graph is strongly connected), and \mathbf{P}_n is imprimitive because $\mathbf{P}_n^n = \mathbf{I}$ insures that every power has zero entries. Furthermore, if $\lambda \in \sigma(\mathbf{P}_n)$, then $\lambda^n \in \sigma(\mathbf{P}_n^n) = \{1\}$, so all eigenvalues of \mathbf{P}_n are roots of unity. Since all eigenvalues on the spectral circle are simple (recall (8.3.13) on p. 676) and uniformly distributed, it must be the case that $\sigma(\mathbf{P}_n) = \{1, \omega, \omega^2, \ldots, \omega^{n-1}\}$.
- **8.3.5.** A is irreducible because the graph $\mathcal{G}(\mathbf{A})$ is strongly connected—every node is accessible by some sequence of paths from every other node.
- **8.3.6. A** is imprimitive. This is easily seen by observing that each \mathbf{A}^{2n} for n > 1 has the same zero pattern (and each \mathbf{A}^{2n+1} for n > 0 has the same zero pattern), so every power of \mathbf{A} has zero entries.
- **8.3.7.** (a) Having row sums less than or equal to 1 means that $\|\mathbf{P}\|_{\infty} \leq 1$. Because $\rho(\star) \leq \|\star\|$ for every matrix norm (recall (7.1.12) on p. 497), it follows that $\rho(\mathbf{S}) \leq \|\mathbf{S}\|_1 \leq 1$.
 - (b) If **e** denotes the column of all 1's, then the hypothesis insures that $\mathbf{Se} \leq \mathbf{e}$, and $\mathbf{Se} \neq \mathbf{e}$. Since **S** is irreducible, the result in Example 8.3.1 (p. 674) implies that it's impossible to have $\rho(\mathbf{S}) = 1$ (otherwise $\mathbf{Se} = \mathbf{e}$), and therefore $\rho(\mathbf{S}) < 1$ by part (a).
- **8.3.8.** If \mathbf{p} is the Perron vector for \mathbf{A} , and if \mathbf{e} is the column of 1's, then

$$\mathbf{D}^{-1}\mathbf{A}\mathbf{D}\mathbf{e} = \mathbf{D}^{-1}\mathbf{A}\mathbf{p} = r\mathbf{D}^{-1}\mathbf{p} = r\mathbf{e}$$

shows that every row sum of $\mathbf{D}^{-1}\mathbf{A}\mathbf{D}$ is r, so we can take $\mathbf{P} = r^{-1}\mathbf{D}^{-1}\mathbf{A}\mathbf{D}$ because the Perron–Frobenius theorem guarantees that r > 0.

8.3.9. Construct the Boolean matrices as described in Example 8.3.5 (p. 680), and show that \mathbf{B}_9 has a zero in the (1,1) position, but $\mathbf{B}_{10} > \mathbf{0}$.

8.3.10. According to the discussion on p. 630, $\mathbf{f}(t) \to \mathbf{0}$ if r < 1. If r = 1, then $\mathbf{f}(t) \to \mathbf{G}\mathbf{f}(0) = \mathbf{p}\left(\mathbf{q}^T\mathbf{f}(0)/\mathbf{q}^T\mathbf{p}\right) > \mathbf{0}$, and if r > 1, the results of the Leslie analysis imply that $f_k(t) \to \infty$ for each k.

- **8.3.11.** The only nonzero coefficient in the characteristic equation for **L** is c_1 , so $\gcd\{2,3,\ldots,n\}=1$.
- **8.3.12.** (a) Suppose that **A** is essentially positive. Since we can always find a $\beta > 0$ such that $\beta \mathbf{I} + \text{diag } (a_{11}, a_{22}, \dots, a_{nn}) \geq \mathbf{0}$, and since $a_{ij} \geq 0$ for $i \neq j$, it follows that $\mathbf{A} + \beta \mathbf{I}$ is a nonnegative irreducible matrix, so (8.3.5) on p. 672 can be applied to conclude that $(\mathbf{A} + (1+\beta)\mathbf{I})^{n-1} > \mathbf{0}$, and thus $\mathbf{A} + \alpha \mathbf{I}$ is primitive with $\alpha = \beta + 1$. Conversely, if $\mathbf{A} + \alpha \mathbf{I}$ is primitive, then $\mathbf{A} + \alpha \mathbf{I}$ must be nonnegative and irreducible, and hence $a_{ij} \geq 0$ for every $i \neq j$, and \mathbf{A} must be irreducible (diagonal entries don't affect the reducibility or irreducibility).
 - (b) If **A** is essentially positive, then $\mathbf{A} + \alpha \mathbf{I}$ is primitive for some α (by the first part), so $(\mathbf{A} + \alpha \mathbf{I})^k > \mathbf{0}$ for some k. Consequently, for all t > 0,

$$\mathbf{0} < \sum_{k=0}^{\infty} \frac{t^k (\mathbf{A} + \alpha \mathbf{I})^k}{k!} = e^{t(\mathbf{A} + \alpha \mathbf{I})} = e^{t\mathbf{A}} e^{t\alpha \mathbf{I}} = \mathbf{B} \implies \mathbf{0} < e^{-\alpha t} \mathbf{B} = e^{t\mathbf{A}}.$$

Conversely, if $\mathbf{0} < e^{t\mathbf{A}} = \sum_{k=0}^{\infty} t^k \mathbf{A}^k / k!$ for all t > 0, then $a_{ij} \ge 0$ for every $i \ne j$, for if $a_{ij} < 0$ for some $i \ne j$, then there exists a sufficiently small t > 0 such that $[\mathbf{I} + t\mathbf{A} + t^2\mathbf{A}^2 / 2 + \cdots]_{ij} < 0$, which is impossible. Furthermore, \mathbf{A} must be irreducible; otherwise

$$\mathbf{A} \sim \begin{pmatrix} \mathbf{X} & \mathbf{Y} \\ \mathbf{0} & \mathbf{Z} \end{pmatrix} \implies e^{t\mathbf{A}} = \sum_{k=0}^{\infty} t^k \mathbf{A}^k / k! \sim \begin{pmatrix} \star & \star \\ \mathbf{0} & \star \end{pmatrix}, \text{ which is impossible.}$$

- **8.3.13.** (a) Being essentially positive implies that there exists some $\alpha \in \Re$ such that $\mathbf{A} + \alpha \mathbf{I}$ is nonnegative and irreducible (by Exercise 8.3.12). If (r, \mathbf{x}) is the Perron eigenpair for $\mathbf{A} + \alpha \mathbf{I}$, then for $\xi = r \alpha$, (ξ, \mathbf{x}) is an eigenpair for \mathbf{A} .
 - (b) Every eigenvalue of $\mathbf{A} + \alpha \mathbf{I}$ has the form $z = \lambda + \alpha$, where $\lambda \in \sigma(\mathbf{A})$, so if r is the Perron root of $\mathbf{A} + \alpha \mathbf{I}$, then for $z \neq r$,

$$|z| < r \implies \operatorname{Re}\left(z\right) < r \implies \operatorname{Re}\left(\lambda + \alpha\right) < r \implies \operatorname{Re}\left(\lambda\right) < r - \alpha = \xi.$$

(c) If $\mathbf{A} \leq \mathbf{B}$, then $\mathbf{A} + \alpha \mathbf{I} \leq \mathbf{B} + \alpha \mathbf{I}$, so Wielandt's theorem (p. 675) insures that $r_A = \rho \left(\mathbf{A} + \alpha \mathbf{I} \right) \leq \rho \left(\mathbf{B} + \alpha \mathbf{I} \right) = r_B$, and hence $\xi_A = r_A - \alpha \leq r_B - \alpha = \xi_B$.

8.3.14. If **A** is primitive with $r = \rho(\mathbf{A})$, then, by (8.3.10) on p. 674,

$$\left(\frac{\mathbf{A}}{r}\right)^{k} \to \mathbf{G} > \mathbf{0} \implies \exists k_{0} \text{ such that } \left(\frac{\mathbf{A}}{r}\right)^{m} > \mathbf{0} \quad \forall m \geq k_{0}$$

$$\Rightarrow \frac{a_{ij}^{(m)}}{r^{m}} > 0 \quad \forall m \geq k_{0}$$

$$\Rightarrow \lim_{m \to \infty} \left(\frac{a_{ij}^{(m)}}{r^{m}}\right)^{1/m} \to 1 \implies \lim_{m \to \infty} \left[a_{ij}^{(m)}\right]^{1/m} = r.$$

Conversely, we know from the Perron–Frobenius theorem that r > 0, so if $\lim_{k\to\infty} \left[a_{ij}^{(k)}\right]^{1/k} = r$, then $\exists k_0$ such that $\forall m \geq k_0$, $\left[a_{ij}^{(m)}\right]^{1/m} > 0$, which implies that $\mathbf{A}^m > \mathbf{0}$, and thus \mathbf{A} is primitive by Frobenius's test (p. 678).

Solutions for exercises in section 8. 4

- **8.4.1.** The left-hand Perron vector for \mathbf{P} is $\boldsymbol{\pi}^T = (10/59, 4/59, 18/59, 27/59)$. It's the limiting distribution in the regular sense because \mathbf{P} is primitive (it has a positive diagonal entry—recall Example 8.3.3 (p. 678)).
- **8.4.2.** The left-hand Perron vector is $\boldsymbol{\pi}^T = (1/n)(1,1,\ldots,1)$. Thus the limiting distribution is the uniform distribution, and in the long run, each state is occupied an equal proportion of the time. The limiting matrix is $\mathbf{G} = (1/n)\mathbf{e}\mathbf{e}^T$.
- **8.4.3.** If **P** is irreducible, then $\rho(\mathbf{P}) = 1$ is a simple eigenvalue for **P**, so

$$rank\left(\mathbf{I}-\mathbf{P}\right)=n-\dim N\left(\mathbf{I}-\mathbf{P}\right)=n-geo\ mult_{\mathbf{P}}\left(1\right)=n-alg\ mult_{\mathbf{P}}\left(1\right)=n-1.$$

8.4.4. Let $\mathbf{A} = \mathbf{I} - \mathbf{P}$, and recall that $rank(\mathbf{A}) = n - 1$ (Exercise 8.4.3). Consequently,

$$\mathbf{A} \text{ singular} \Longrightarrow \ \mathbf{A}[\text{adj}\left(\mathbf{A}\right)] = \mathbf{0} = [\text{adj}\left(\mathbf{A}\right)]\mathbf{A} \quad \text{(Exercise 6.2.8, p. 484)},$$
 and

$$rank(\mathbf{A}) = n - 1 \Longrightarrow rank(adj(\mathbf{A})) = 1$$
 (Exercises 6.2.11).

It follows from $\mathbf{A}[\mathrm{adj}(\mathbf{A})] = \mathbf{0}$ and the Perron–Frobenius theorem that each column of $[\mathrm{adj}(\mathbf{A})]$ must be a multiple of \mathbf{e} (the column of 1's or, equivalently, the right-hand Perron vector for \mathbf{P}), so $[\mathrm{adj}(\mathbf{A})] = \mathbf{e}\mathbf{v}^T$ for some vector \mathbf{v} . But $[\mathrm{adj}(\mathbf{A})]_{ii} = P_i$ forces $\mathbf{v}^T = (P_1, P_2, \ldots, P_n)$. Similarly, $[\mathrm{adj}(\mathbf{A})]\mathbf{A} = \mathbf{0}$ insures that each row in $[\mathrm{adj}(\mathbf{A})]$ is a multiple of $\boldsymbol{\pi}^T$ (the left-hand Perron vector of \mathbf{P}), and hence $\mathbf{v}^T = \alpha \boldsymbol{\pi}^T$ for some α . This scalar α can't be zero; otherwise $[\mathrm{adj}(\mathbf{A})] = \mathbf{0}$, which is impossible because $\operatorname{rank}(\mathrm{adj}(\mathbf{A})) = 1$. Therefore, $\mathbf{v}^T\mathbf{e} = \alpha \neq 0$, and $\mathbf{v}^T/(\mathbf{v}^T\mathbf{e}) = \mathbf{v}^T/\alpha = \boldsymbol{\pi}^T$.

- **8.4.5.** If $\mathbf{Q}_{k \times k}$ $(1 \le k < n)$ is a principal submatrix of \mathbf{P} , then there is a permutation matrix \mathbf{H} such that $\mathbf{H}^T \mathbf{P} \mathbf{H} = \begin{pmatrix} \mathbf{Q} & \mathbf{X} \\ \mathbf{Y} & \mathbf{Z} \end{pmatrix} = \widetilde{\mathbf{P}}$. If $\mathbf{B} = \begin{pmatrix} \mathbf{Q} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$, then $\mathbf{B} \le \widetilde{\mathbf{P}}$, and we know from Wielandt's theorem (p. 675) that $\rho(\mathbf{B}) \le \rho(\widetilde{\mathbf{P}}) = 1$, and if $\rho(\mathbf{B}) = \rho(\widetilde{\mathbf{P}}) = 1$, then there is a number ϕ and a nonsingular diagonal matrix \mathbf{D} such that $\mathbf{B} = e^{i\phi} \mathbf{D} \widetilde{\mathbf{P}} \mathbf{D}^{-1}$ or, equivalently, $\widetilde{\mathbf{P}} = e^{-i\phi} \mathbf{D} \mathbf{B} \mathbf{D}^{-1}$. But this implies that $\mathbf{X} = \mathbf{0}$, $\mathbf{Y} = \mathbf{0}$, and $\mathbf{Z} = \mathbf{0}$, which is impossible because \mathbf{P} is irreducible. Therefore, $\rho(\mathbf{B}) < 1$, and thus $\rho(\mathbf{Q}) < 1$.
- **8.4.6.** In order for $\mathbf{I} \mathbf{Q}$ to be an M-matrix, it must be the case that $[\mathbf{I} \mathbf{Q}]_{ij} \leq 0$ for $i \neq j$, and $\mathbf{I} \mathbf{Q}$ must be nonsingular with $(\mathbf{I} \mathbf{Q})^{-1} \geq \mathbf{0}$. It's clear that $[\mathbf{I} \mathbf{Q}]_{ij} \leq 0$ because $0 \leq q_{ij} \leq 1$. Exercise 8.4.5 says that $\rho(\mathbf{Q}) < 1$, so

the Neumann series expansion (p. 618) insures that $\mathbf{I} - \mathbf{Q}$ is nonsingular and $(\mathbf{I} - \mathbf{Q})^{-1} = \sum_{j=1}^{\infty} \mathbf{Q}^j \geq \mathbf{0}$. Thus $\mathbf{I} - \mathbf{Q}$ is an M-matrix. **8.4.7.** We know from Exercise 8.4.6 that every principal submatrix of order $1 \leq k < 1$

- **8.4.7.** We know from Exercise 8.4.6 that every principal submatrix of order $1 \le k < n$ is an M-matrix, and M-matrices have positive determinants by (7.10.28) on p. 626.
- 8.4.8. You can consider an absorbing chain with eight states

$$\{(1,1,1),(1,1,0),(1,0,1),(0,1,1),(1,0,0),(0,1,0),(0,0,1),(0,0,0)\}$$

similar to what was described in Example 8.4.5, or you can use a four-state chain in which the states are defined to be the *number* of controls that hold at each activation of the system. Using the eight-state chain yields the following mean-time-to-failure vector.

$$\begin{array}{c} (1,1,1) \\ (1,1,0) \\ (1,0,1) \\ (0,1,1) \\ (0,1,0) \\ (1,0,0) \\ (0,1,0) \\ (0,0,1) \end{array} \right) \begin{array}{c} 368.4 \\ 366.6 \\ 366.6 \\ 361.3 \\ 361.3 \\ 361.3 \\ 361.3 \end{array}) = (\mathbf{I} - \mathbf{T}_{11})^{-1} \mathbf{e}.$$

8.4.9. This is a Markov chain with nine states (c, m) in which c is the chamber occupied by the cat, and m is the chamber occupied by the mouse. There are three absorbing states—namely (1, 1), (2, 2), (3, 3). The transition matrix is

$$\mathbf{P} = \frac{(1,2) \quad (1,3) \quad (2,1) \quad (2,3) \quad (3,1) \quad (3,2) \quad (1,1) \quad (2,2) \quad (3,3)}{(1,3) \quad (1,3) \quad (1,3$$

The expected number of steps until absorption and absorption probabilities are