
Solutions for Chapter 8

Solutions for exercises in section 8. 2

8.2.1. The eigenvalues are σ (A) = {12, 6} with alg multA (6) = 2, and it’s clear that
12 = ρ(A) ∈ σ (A) . The eigenspace N(A−12I) is spanned by e = (1, 1, 1)T , so
the Perron vector is p = (1/3)(1, 1, 1)T . The left-hand eigenspace N(AT −12I)
is spanned by (1, 2, 3)T , so the left-hand Perron vector is qT = (1/6)(1, 2, 3).

8.2.3. If p1 and p2 are two vectors satisfying Ap = ρ (A)p, p > 0, and ‖p‖1 = 1,
then dimN (A − ρ (A) I) = 1 implies that p1 = αp2 for some α < 0. But
‖p1‖1 = ‖p2‖1 = 1 insures that α = 1.

8.2.4. σ (A) = {0, 1}, so ρ (A) = 1 is the Perron root, and the Perron vector is
p = (α + β)−1(β, α).

8.2.5. (a) ρ(A/r) = 1 is a simple eigenvalue of A/r, and it’s the only eigenvalue on
the spectral circle of A/r, so (7.10.33) on p. 630 guarantees that limk→∞(A/r)k

exists.
(b) This follows from (7.10.34) on p. 630.
(c) G is the spectral projector associated with the simple eigenvalue λ = r,
so formula (7.2.12) on p. 518 applies.

8.2.6. If e is the column of all 1 ’s, then Ae = ρe. Since e > 0, it must be a positive
multiple of the Perron vector p, and hence p = n−1e. Therefore, Ap = ρp
implies that ρ = ρ (A) . The result for column sums follows by considering AT .

8.2.7. Since ρ = maxi

∑
j aij is the largest row sum of A, there must exist a matrix

E ≥ 0 such that every row sum of B = A + E is ρ. Use Example 7.10.2
(p. 619) together with Exercise 8.2.7 to obtain ρ (A) ≤ ρ (B) = ρ. The lower
bound follows from the Collatz–Wielandt formula. If e is the column of ones,
then e ∈ N , so

ρ (A) = max
x∈N

f(x) ≥ f(e) = min
1≤i≤n

[Ae]i
ei

= min
i

n∑
j=1

aij .

8.2.8. (a), (b), (c), and (d) are illustrated by using the nilpotent matrix A =
(

0 1
0 0

)
.

(e) A =
(

0 1
1 0

)
has eigenvalues ±1.

8.2.9. If ξ = g(x) for x ∈ P, then ξx ≥ Ax > 0. Let p and qT be the respective
the right-hand and left-hand Perron vectors for A associated with the Perron
root r, and use (8.2.3) along with qT x > 0 to write

ξx ≥ Ax > 0 =⇒ ξqT x ≥ qT Ax = rqT x =⇒ ξ ≥ r,
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so g(x) ≥ r for all x ∈ P. Since g(p) = r and p ∈ P, it follows that
r = minx∈P g(x).

8.2.10. A =
(

1 2
2 4

)
=⇒ ρ(A) = 5, but g(e1) = 1 =⇒ minx∈N g(x) < ρ(A).

Solutions for exercises in section 8. 3

8.3.1. (a) The graph is strongly connected.
(b) ρ (A) = 3, and p = (1/6, 1/2, 1/3)T .

(c) h = 2 because A is imprimitive and singular.
8.3.2. If A is nonsingular then there are either one or two distinct nonzero eigenvalues

inside the spectral circle. But this is impossible because σ (A) has to be invariant
under rotations of 120◦ by the result on p. 677. Similarly, if A is singular with
alg multA (0) = 1, then there is a single nonzero eigenvalue inside the spectral
circle, which is impossible.

8.3.3. No! The matrix A =
(

1 1
0 2

)
has ρ (A) = 2 with a corresponding eigenvector

e = (1, 1)T , but A is reducible.
8.3.4. Pn is nonnegative and irreducible (its graph is strongly connected), and Pn

is imprimitive because Pn
n = I insures that every power has zero entries. Fur-

thermore, if λ ∈ σ (Pn) , then λn ∈ σ(Pn
n) = {1}, so all eigenvalues of Pn

are roots of unity. Since all eigenvalues on the spectral circle are simple (re-
call (8.3.13) on p. 676) and uniformly distributed, it must be the case that
σ (Pn) = {1, ω, ω2, . . . , ωn−1}.

8.3.5. A is irreducible because the graph G(A) is strongly connected—every node is
accessible by some sequence of paths from every other node.

8.3.6. A is imprimitive. This is easily seen by observing that each A2n for n > 1 has
the same zero pattern (and each A2n+1 for n > 0 has the same zero pattern),
so every power of A has zero entries.

8.3.7. (a) Having row sums less than or equal to 1 means that ‖P‖∞ ≤ 1. Because
ρ (�) ≤ ‖�‖ for every matrix norm (recall (7.1.12) on p. 497), it follows that
ρ (S) ≤ ‖S‖1 ≤ 1.

(b) If e denotes the column of all 1’s, then the hypothesis insures that Se ≤ e,
and Se 
= e. Since S is irreducible, the result in Example 8.3.1 (p. 674) implies
that it’s impossible to have ρ (S) = 1 (otherwise Se = e), and therefore ρ (S) <
1 by part (a).

8.3.8. If p is the Perron vector for A, and if e is the column of 1 ’s, then

D−1ADe = D−1Ap = rD−1p = re

shows that every row sum of D−1AD is r, so we can take P = r−1D−1AD
because the Perron–Frobenius theorem guarantees that r > 0.

8.3.9. Construct the Boolean matrices as described in Example 8.3.5 (p. 680), and show
that B9 has a zero in the (1, 1) position, but B10 > 0.
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8.3.10. According to the discussion on p. 630, f(t) → 0 if r < 1. If r = 1, then
f(t) → Gf(0) = p

(
qT f(0)/qT p

)
> 0, and if r > 1, the results of the Leslie

analysis imply that fk(t) → ∞ for each k.
8.3.11. The only nonzero coefficient in the characteristic equation for L is c1, so

gcd{2, 3, . . . , n} = 1.
8.3.12. (a) Suppose that A is essentially positive. Since we can always find a β > 0

such that βI + diag (a11, a22, . . . , ann) ≥ 0, and since aij ≥ 0 for i 
= j, it
follows that A + βI is a nonnegative irreducible matrix, so (8.3.5) on p. 672
can be applied to conclude that (A + (1 + β)I)n−1 > 0, and thus A + αI is
primitive with α = β +1. Conversely, if A+αI is primitive, then A+αI must
be nonnegative and irreducible, and hence aij ≥ 0 for every i 
= j, and A must
be irreducible (diagonal entries don’t affect the reducibility or irreducibility).
(b) If A is essentially positive, then A + αI is primitive for some α (by the
first part), so (A + αI)k > 0 for some k. Consequently, for all t > 0,

0 <

∞∑
k=0

tk(A + αI)k

k!
= et(A+αI) = etAetαI = B =⇒ 0 < e−αtB = etA.

Conversely, if 0 < etA =
∑∞

k=0 tkAk/k! for all t > 0, then aij ≥ 0 for every
i 
= j, for if aij < 0 for some i 
= j, then there exists a sufficiently small t > 0
such that [I + tA + t2A2/2 + · · ·]ij < 0, which is impossible. Furthermore, A
must be irreducible; otherwise

A ∼
(

X Y
0 Z

)
=⇒ etA =

∞∑
k=0

tkAk/k! ∼
(

� �
0 �

)
, which is impossible.

8.3.13. (a) Being essentially positive implies that there exists some α ∈ � such that
A+αI is nonnegative and irreducible (by Exercise 8.3.12). If (r,x) is the Perron
eigenpair for A + αI, then for ξ = r − α, (ξ,x) is an eigenpair for A.

(b) Every eigenvalue of A + αI has the form z = λ + α, where λ ∈ σ (A) ,
so if r is the Perron root of A + αI, then for z 
= r,

|z| < r =⇒ Re (z) < r =⇒ Re (λ + α) < r =⇒ Re (λ) < r − α = ξ.

(c) If A ≤ B, then A + αI ≤ B + αI, so Wielandt’s theorem (p. 675) insures
that rA = ρ (A + αI) ≤ ρ (B + αI) = rB , and hence ξA = rA−α ≤ rB −α = ξB .

8.3.14. If A is primitive with r = ρ (A) , then, by (8.3.10) on p. 674,(A
r

)k

→ G > 0 =⇒ ∃ k0 such that
(A

r

)m

> 0 ∀m ≥ k0

=⇒
a
(m)
ij

rm
> 0 ∀m ≥ k0

=⇒ lim
m→∞

(
a
(m)
ij

rm

)1/m

→ 1 =⇒ lim
m→∞

[
a
(m)
ij

]1/m

= r.
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Conversely, we know from the Perron–Frobenius theorem that r > 0, so if

limk→∞
[
a
(k)
ij

]1/k

= r, then ∃ k0 such that ∀m ≥ k0,
[
a
(m)
ij

]1/m

> 0, which
implies that Am > 0, and thus A is primitive by Frobenius’s test (p. 678).

Solutions for exercises in section 8. 4

8.4.1. The left-hand Perron vector for P is πT = (10/59, 4/59, 18/59, 27/59). It’s
the limiting distribution in the regular sense because P is primitive (it has a
positive diagonal entry—recall Example 8.3.3 (p. 678)).

8.4.2. The left-hand Perron vector is πT = (1/n)(1, 1, . . . , 1). Thus the limiting dis-
tribution is the uniform distribution, and in the long run, each state is occupied
an equal proportion of the time. The limiting matrix is G = (1/n)eeT .

8.4.3. If P is irreducible, then ρ (P) = 1 is a simple eigenvalue for P, so

rank (I − P) = n−dimN (I − P) = n−geo multP (1) = n−alg multP (1) = n−1.

8.4.4. Let A = I−P, and recall that rank (A) = n−1 (Exercise 8.4.3). Consequently,

A singular =⇒ A[adj (A)] = 0 = [adj (A)]A (Exercise 6.2.8, p. 484),
and

rank (A) = n − 1 =⇒ rank (adj (A)) = 1 (Exercises 6.2.11).

It follows from A[adj (A)] = 0 and the Perron–Frobenius theorem that each col-
umn of [adj (A)] must be a multiple of e (the column of 1 ’s or, equivalently,
the right-hand Perron vector for P), so [adj (A)] = evT for some vector v.
But [adj (A)]ii = Pi forces vT = (P1, P2, . . . , Pn). Similarly, [adj (A)]A = 0
insures that each row in [adj (A)] is a multiple of πT (the left-hand Perron vec-
tor of P), and hence vT = απT for some α. This scalar α can’t be zero; other-
wise [adj (A)] = 0, which is impossible because rank (adj (A)) = 1. Therefore,
vT e = α 
= 0, and vT /(vT e) = vT /α = πT .

8.4.5. If Qk×k (1 ≤ k < n) is a principal submatrix of P, then there is a permutation

matrix H such that HT PH =
(

Q X
Y Z

)
= P̃. If B =

(
Q 0
0 0

)
, then

B ≤ P̃, and we know from Wielandt’s theorem (p. 675) that ρ (B) ≤ ρ
(
P̃

)
= 1,

and if ρ (B) = ρ
(
P̃

)
= 1, then there is a number φ and a nonsingular diagonal

matrix D such that B = eiφDP̃D−1 or, equivalently, P̃ = e−iφDBD−1. But
this implies that X = 0, Y = 0, and Z = 0, which is impossible because P
is irreducible. Therefore, ρ (B) < 1, and thus ρ (Q) < 1.

8.4.6. In order for I − Q to be an M-matrix, it must be the case that [I − Q]ij ≤ 0
for i 
= j, and I − Q must be nonsingular with (I − Q)−1 ≥ 0. It’s clear that
[I − Q]ij ≤ 0 because 0 ≤ qij ≤ 1. Exercise 8.4.5 says that ρ (Q) < 1, so
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the Neumann series expansion (p. 618) insures that I − Q is nonsingular and
(I − Q)−1 =

∑∞
j=1 Qj ≥ 0. Thus I − Q is an M-matrix.

8.4.7. We know from Exercise 8.4.6 that every principal submatrix of order 1 ≤ k <
n is an M-matrix, and M-matrices have positive determinants by (7.10.28) on
p. 626.

8.4.8. You can consider an absorbing chain with eight states

{(1, 1, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0)}

similar to what was described in Example 8.4.5, or you can use a four-state
chain in which the states are defined to be the number of controls that hold at
each activation of the system. Using the eight-state chain yields the following
mean-time-to-failure vector.



(1, 1, 1) 368.4
(1, 1, 0) 366.6
(1, 0, 1) 366.6
(0, 1, 1) 366.6
(1, 0, 0) 361.3
(0, 1, 0) 361.3
(0, 0, 1) 361.3


= (I − T11)−1e.

8.4.9. This is a Markov chain with nine states (c, m) in which c is the chamber
occupied by the cat, and m is the chamber occupied by the mouse. There are
three absorbing states—namely (1, 1), (2, 2), (3, 3). The transition matrix is

P =
1
72



(1, 2) (1, 3) (2, 1) (2, 3) (3, 1) (3, 2) (1, 1) (2, 2) (3, 3)

(1, 2) 18 12 3 6 3 9 6 9 6
(1, 3) 12 18 3 9 3 6 6 6 9
(2, 1) 3 3 18 9 12 6 6 9 6
(2, 3) 4 6 6 18 4 8 2 12 12
(3, 1) 3 3 12 6 18 9 6 6 9
(3, 2) 6 4 4 8 6 18 2 12 12
(1, 1) 0 0 0 0 0 0 72 0 0
(2, 2) 0 0 0 0 0 0 0 72 0
(3, 3) 0 0 0 0 0 0 0 0 72


The expected number of steps until absorption and absorption probabilities are

(I − T11)−1e=


(1, 2) 3.24
(1, 3) 3.24
(2, 1) 3.24
(2, 3) 2.97
(3, 1) 3.24
(3, 2) 2.97

 and (I − T11)−1T12=


(1, 1) (2, 2) (3, 3)

0.226 0.41 0.364
0.226 0.364 0.41
0.226 0.41 0.364
0.142 0.429 0.429
0.226 0.364 0.41
0.142 0.429 0.429




