Solutions for Chapter 8

Solutionsfor exercisesin section 8. 2

8.2.1.

8.2.3.

8.2.4.

8.2.5.

8.2.6.

8.2.7.

8.2.8.

8.2.9.

The eigenvalues are o (A) = {12,6} with alg mult, (6) =2, and it’s clear that
12 = p(A) € 6 (A). The eigenspace N(A—12I) is spanned by e = (1,1,1)T, so
the Perron vector is p = (1/3)(1,1,1)T. The left-hand eigenspace N(AT —121)
is spanned by (1,2,3)7, so the left-hand Perron vector is q7 = (1/6)(1,2, 3).
If py and po are two vectors satisfying Ap =p(A)p, p>0, and |p|, =1,
then dim N (A —p(A)I) = 1 implies that p; = aps for some o < 0. But
Ipill; = ||lp2ll; =1 insures that o = 1.

o(A) = {0,1}, so p(A) = 1 is the Perron root, and the Perron vector is
p=(a+8)"1(5, a)

(a) p(A/r)=1 is a simple eigenvalue of A/r, and it’s the only eigenvalue on
the spectral circle of A/r, so (7.10.33) on p. 630 guarantees that limg o (A/r)"
exists.

(b) This follows from (7.10.34) on p. 630.

(¢) G is the spectral projector associated with the simple eigenvalue A = r,
so formula (7.2.12) on p. 518 applies.

If e is the column of all 1’s, then Ae = pe. Since e > 0, it must be a positive
multiple of the Perron vector p, and hence p = n~'e. Therefore, Ap = pp
implies that p = p (A). The result for column sums follows by considering A7
Since p = max; » jGij 1s the largest row sum of A, there must exist a matrix
E > 0 such that every row sum of B = A + E is p. Use Example 7.10.2
(p. 619) together with Exercise 8.2.7 to obtain p(A) < p(B) = p. The lower
bound follows from the Collatz—Wielandt formula. If e is the column of ones,
then e € N/, so

xEN 1<i<n e

p(A) = max f(x) > f(e) = min [Ae_z]i = m}nzaij-
i =1

(a), (b), (c), and (d) are illustrated by using the nilpotent matrix A = <8 (1)) .

(e) A= <(1) é) has eigenvalues +1.

If ¢ =g(x) for x € P, then {&x > Ax > 0. Let p and g be the respective
the right-hand and left-hand Perron vectors for A associated with the Perron
root 7, and use (8.2.3) along with q”x > 0 to write

Ex>Ax>0 = x> qlAx=rqlx = ¢>r,
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Solutions

so g(x) > r for all x € P. Since g(p) = r and p € P, it follows that
7 = minkep g(X).

A= (% 2) = p(A)=5, but gle;) =1 = mingen g(x) < p(A).

Solutionsfor exercisesin section 8. 3

8.3.1.

8.3.2.

8.3.3.

8.3.4.

8.3.5.

8.3.6.

8.3.7.

8.3.8.

8.3.9.

(a) The graph is strongly connected.

(b) p(A)=3, and p=(1/6,1/2, 1/3)".

(c) h =2 because A is imprimitive and singular.

If A is nonsingular then there are either one or two distinct nonzero eigenvalues
inside the spectral circle. But this is impossible because o (A) has to be invariant
under rotations of 120° by the result on p. 677. Similarly, if A is singular with
alg mult, (0) = 1, then there is a single nonzero eigenvalue inside the spectral
circle, which is impossible.

No! The matrix A = (é ;) has p(A) =2 with a corresponding eigenvector

e=(1,1)7, but A is reducible.

P, is nonnegative and irreducible (its graph is strongly connected), and P,
is imprimitive because P = I insures that every power has zero entries. Fur-
thermore, if A € o (P,,), then A" € o(P?) = {1}, so all eigenvalues of P,
are roots of unity. Since all eigenvalues on the spectral circle are simple (re-
call (8.3.13) on p. 676) and uniformly distributed, it must be the case that
o(Py) ={l,w,w? ..., 0"}

A is irreducible because the graph G(A) is strongly connected—every node is
accessible by some sequence of paths from every other node.

A is imprimitive. This is easily seen by observing that each A" for n > 1 has
the same zero pattern (and each A?"*! for n > 0 has the same zero pattern),
so every power of A has zero entries.

(a) Having row sums less than or equal to 1 means that ||P|_ < 1. Because
p (%) < ||%|| for every matrix norm (recall (7.1.12) on p. 497), it follows that
p(S) < ISIl, < 1.

(b) If e denotes the column of all 1’s, then the hypothesis insures that Se < e,
and Se # e. Since S is irreducible, the result in Example 8.3.1 (p. 674) implies
that it’s impossible to have p(S) =1 (otherwise Se = e), and therefore p (S) <
1 by part (a).

If p is the Perron vector for A, and if e is the column of 1’s, then

D 'ADe=D'Ap=rD 'p=re

shows that every row sum of D™'AD is r, so we can take P = r"'D"1AD
because the Perron-Frobenius theorem guarantees that r > 0.

Construct the Boolean matrices as described in Example 8.3.5 (p. 680), and show
that Bg has a zero in the (1,1) position, but Big > 0.
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According to the discussion on p. 630, f(t) — 0 if » < 1. If » = 1, then
f(t) — Gf(0) = p(qTf(O)/qu) > 0, and if 7 > 1, the results of the Leslie

analysis imply that fi(¢f) — oo for each k.

The only nonzero coefficient in the characteristic equation for L is c¢;, so
ged{2,3,...,n} = 1.

(a) Suppose that A is essentially positive. Since we can always find a 5 > 0
such that SBI+ diag (ai1, a22,...,ann) >0, and since a;; > 0 for i # j, it
follows that A + (I is a nonnegative irreducible matrix, so (8.3.5) on p. 672
can be applied to conclude that (A + (1 + 8)I)"~! > 0, and thus A + ol is
primitive with o = g+ 1. Conversely, if A+ al is primitive, then A+ al must
be nonnegative and irreducible, and hence a;; > 0 for every ¢ # j, and A must
be irreducible (diagonal entries don’t affect the reducibility or irreducibility).

(b) If A is essentially positive, then A + ol is primitive for some a (by the
first part), so (A + aI)* > 0 for some k. Consequently, for all ¢ > 0,

% 4k k
0 < Zt (A+al)® _ t(a+al) _ tAal _ g . D<o B = oA
k!
k=0

Conversely, if 0 < e =322 [ t*A¥/k! for all ¢ > 0, then a;; > 0 for every
i # j, for if a;; < 0 for some i # j, then there exists a sufficiently small ¢ > 0
such that [I+tA + t2A2/2+ ---];; < 0, which is impossible. Furthermore, A
must be irreducible; otherwise

XY tA = kA k ' *x % . .. .
A <0 Z> = e 7,;)tA/k. 0 x)° which is impossible.

(a) Being essentially positive implies that there exists some « € R such that
A +al is nonnegative and irreducible (by Exercise 8.3.12). If (r,x) is the Perron
eigenpair for A 4 al, then for £ =r — «, (£,x) is an eigenpair for A.

(b) Every eigenvalue of A + oI has the form z = A+ a, where A € 0 (A),
so if r is the Perron root of A + oI, then for z # r,

|zl <r = Re(z) <r = Re(A+a) <r = Re(\) <r—a=¢

(¢) If A<B, then A+al <B+al, so Wielandt’s theorem (p. 675) insures
that 14 = p(A+al) <p(B+al)=rp, andhence {4 =14 —a <rp—a=¢g.
If A is primitive with r = p(A), then, by (8.3.10) on p. 674,

A

k A\m
(—) —~G>0 — 3k such that (—) >0 VYm >k
T T

o™

(m)\ 1/m
. 2% . (m)M/™
— lim —1 = lim [a . } =r.

m— o0 rm m— oo v
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Conversely, we know from the Perron—Frobenius theorem that r > 0, so if
1/k " 1/m .
E? =r, then 3 kg such that Vm > ko, [agj ) > 0, which

implies that A™ > 0, and thus A is primitive by Frobenius’s test (p. 678).

lim,_. |a

Solutions for exercisesin section 8. 4

8.4.1.

8.4.2.

8.4.3.

8.4.4.

8.4.5.

8.4.6.

The left-hand Perron vector for P is w7 = (10/59, 4/59, 18/59, 27/59). It’s
the limiting distribution in the regular sense because P is primitive (it has a
positive diagonal entry—recall Example 8.3.3 (p. 678)).

The left-hand Perron vector is w7 = (1/n)(1,1,...,1). Thus the limiting dis-
tribution is the uniform distribution, and in the long run, each state is occupied
an equal proportion of the time. The limiting matrix is G = (1/n)ee”.

If P isirreducible, then p(P) =1 is a simple eigenvalue for P, so
rank (I —P) = n—dim N (I — P) = n—geo multp (1) = n—alg multp (1) = n—1.
Let A =I—P, and recall that rank (A) = n—1 (Exercise 8.4.3). Consequently,

A singular = Aladj(A)] =0 = [adj (A)]A (Exercise 6.2.8, p. 484),
and
rank (A)=n—1= rank(adj(A)) =1 (Exercises 6.2.11).

It follows from Aladj(A)] = 0 and the Perron—Frobenius theorem that each col-
umn of [adj (A)] must be a multiple of e (the column of 1’s or, equivalently,
the right-hand Perron vector for P), so [adj(A)] = ev? for some vector v.
But [adj(A)); = P; forces vI = (P, Py, ..., P,). Similarly, [adj(A)]JA =0
insures that each row in [adj (A)] is a multiple of 77 (the left-hand Perron vec-
tor of P), and hence vI' = an? for some . This scalar « can’t be zero; other-
wise [adj (A)] = 0, which is impossible because rank (adj (A)) = 1. Therefore,
vlie=a#0, and vT/(vTe) =vl/a ==T.

If Qrxir (1 <k < n)isa principal submatrix of P, then there is a permutation

matrix H such that H' PH = (Y Z> =P If B = (0 0), then

B < P, and we know from Wiclandt’s theorem (p. 675) that p (B) < p (f’) =1,

and if p(B) =p (f’) =1, then there is a number ¢ and a nonsingular diagonal

matrix D such that B = ¢*DPD~! or, equivalently, P = e-*DBD~L. But
this implies that X =0, Y =0, and Z = 0, which is impossible because P
is irreducible. Therefore, p(B) < 1, and thus p(Q) < 1.

In order for T — Q to be an M-matrix, it must be the case that [I —QJ;; <0
for i # j, and I — Q must be nonsingular with (I — Q)~! > 0. It’s clear that
I—QJi; <0 because 0 < ¢;; < 1. Exercise 8.4.5 says that p(Q) < 1, so
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the Neumann series expansion (p. 618) insures that I — Q is nonsingular and
I-Q)'= Py Q’ > 0. Thus I - Q is an M-matrix.

We know from Exercise 8.4.6 that every principal submatrix of order 1 < k <
n is an M-matrix, and M-matrices have positive determinants by (7.10.28) on
p. 626.

You can consider an absorbing chain with eight states

{(1,1,1),(1,1,0),(1,0,1),(0,1,1),(1,0,0),(0,1,0), (0,0,1), (0,0,0)}

similar to what was described in Example 8.4.5, or you can use a four-state
chain in which the states are defined to be the number of controls that hold at
each activation of the system. Using the eight-state chain yields the following
mean-time-to-failure vector.

) [ 368.4
) [ 366.6

) | 366.6

) 366.6 = (I — Tll)_le.
)| 361.3

)| 361.3

) \ 361.3

8.4.9. This is a Markov chain with nine states (¢,m) in which ¢ is the chamber

occupied by the cat, and m is the chamber occupied by the mouse. There are
three absorbing states—namely (1,1), (2,2), (3,3). The transition matrix is

(1,2) (1,3) (2,1) (2,3) 3,1 (3,2) (1,1) (2,2) (3,3)

(1,2) 18 12 3 6 3 9 6 9 6

(1,3) 12 18 3 9 3 6 6 6 9

(2,1) 3 3 18 9 12 6 6 9 6

1 (2,3) 4 6 6 18 4 8 2 12 12
- — (3,1) 3 3 12 6 18 9 6 6 9
72 (3,2) 6 4 4 8 6 18 2 12 12
(1,1) 0 0 0 0 0 0 72 0 0

(2,2) 0 0 0 0 0 0 0 72 0

(3,3) 0 0 0 0 0 0 0 0 72

The expected number of steps until absorption and absorption probabilities are

(1,1) (2,2) (3,3)

(1,2) ,3.24 0.226 0.41 0.364
813 g-gi 0.226 0.364 0.41
, . 1 0.226 0.41 0.364
(I-Tu) ‘e= (2,3) | 297 and  (I=Tu) Tia= | g7 0420 0429
(3,1) | 3.24 0.226 0.364 0.41
(3,2) \ 2.97 0.142 0.429 0.429



